Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

IPR002172

Description

IPR002172 is a Low-density lipoprotein (LDL) receptor class A repeat.

<p>This entry represents the LDLR class A (cysteine-rich) repeat, which contains 6 disulphide-bound cysteines and a highly conserved cluster of negatively charged amino acids, of which many are clustered on one face of the module [[cite:PUB00004868]]. In LDL receptors, the class A domains form the binding site for LDL and calcium. The acidic residues between the fourth and sixth cysteines are important for high-affinity binding of positively charged sequences in LDLR's ligands. The repeat consists of a β-hairpin structure followed by a series of β turns. In the absence of calcium, LDL-A domains are unstructured; the bound calcium ion imparts structural integrity. Following these repeats is a 350 residue domain that resembles part of the epidermal growth factor (EGF) precursor. Numerous familial hypercholesterolemia mutations of the LDL receptor alter the calcium coordinating residue of LDL-A domains or other crucial scaffolding residues.</p> <p>The low-density lipoprotein receptor (LDLR) is the major cholesterol-carrying lipoprotein of plasma, acting to regulate cholesterol homeostasis in mammalian cells. The LDL receptor binds LDL and transports it into cells by acidic endocytosis. In order to be internalized, the receptor-ligand complex must first cluster into clathrin-coated pits. Once inside the cell, the LDLR separates from its ligand, which is degraded in the lysosomes, while the receptor returns to the cell surface [[cite:PUB00017008]]. The internal dissociation of the LDLR with its ligand is mediated by proton pumps within the walls of the endosome that lower the pH. The LDLR is a multi-domain protein, containing:</p> <ul><li>The ligand-binding domain contains seven or eight 40-amino acid LDLR class A (cysteine-rich) repeats, each of which contains a coordinated calcium ion and six cysteine residues involved in disulphide bond formation [[cite:PUB00000798]]. Similar domains have been found in other extracellular and membrane proteins [[cite:PUB00004868]].</li></ul> <ul><li>The second conserved region contains two EGF repeats, followed by six LDLR class B (YWTD) repeats, and another EGF repeat. The LDLR class B repeats each contain a conserved YWTD motif, and is predicted to form a β-propeller structure [[cite:PUB00003391]]. This region is critical for ligand release and recycling of the receptor [[cite:PUB00017009]].</li></ul> <ul><li>The third domain is rich in serine and threonine residues and contains clustered O-linked carbohydrate chains.</li></ul> <ul><li>The fourth domain is the hydrophobic transmembrane region.</li></ul> <ul><li>The fifth domain is the cytoplasmic tail that directs the receptor to clathrin-coated pits.</li></ul> <p>LDLR is closely related in structure to several other receptors, including LRP1, LRP1b, megalin/LRP2, VLDL receptor, lipoprotein receptor, MEGF7/LRP4, and LRP8/apolipoprotein E receptor2); these proteins participate in a wide range of physiological processes, including the regulation of lipid metabolism, protection against atherosclerosis, neurodevelopment, and transport of nutrients and vitamins [[cite:PUB00042617]].</p>

This description is obtained from EB-eye REST.

Associated GO terms

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

GO term Namespace Name Definition Relationships
Molecular function Protein binding Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).

Co-occuring domains 1

A list of co-occurring predicted domains within the L. japonicus gene space:

Predicted domain Source Observations Saturation (%)
TRANSMEMBRANE Phobius 1 100.00