Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message
Field | Value |
---|---|
Namespace | Molecular function |
Short description | Alpha-1,2-mannosyltransferase activity |
Full defintion | Catalysis of the transfer of a mannose residue to an oligosaccharide, forming an alpha-(1->2) linkage. |
Subterm of |
The relationship of GO:0000026 with other GO terms.
Relationship type | GO terms |
---|---|
Is a | |
Regulates | n.a. |
Part of | n.a. |
Positively regulates | n.a. |
Negatively regulates | n.a. |
A force layout showing the ancestor tree for GO:0000026, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.
This table contains additional metadata associated with the GO entry's definition field.
Field | Value |
---|---|
GOC | mcc |
PMID | Mnt2p and Mnt3p of Saccharomyces cerevisiae are members of the Mnn1p family of alpha-1,3-mannosyltransferases responsible for adding the terminal mannose residues of O-linked oligosaccharides. Glycobiology. 1999 Oct; 9 (10): 1045–51.PMID: 10521541 The genome of Saccharomyces cerevisiae contains five genes that encode type II transmembrane proteins with significant amino acid similarity to the alpha-1,3-mannosyltransferase Mnn1p. The roles of the three genes most closely related to MNN1 were examined in mutants carrying single and multiple combinations of the disrupted genes. Paper chromatographic analysis of [2-3H]mannose-labeled O-linked oligosaccharides released by beta-elimination showed that the MNT2 (YGL257c) and MNT3 (YIL014w) genes in combination with MNN1 have overlapping roles in the addition of the fourth and fifth alpha-1,3-linked mannose residues to form Man4 and Man5 oligosaccharides whereas MNT4 (YNR059w) does not appear to be required for O-glycan synthesis. |
GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .