Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

GO:0006915

Overview

Field Value
Namespace Biological process
Short description Apoptotic process
Full defintion A programmed cell death process which begins when a cell receives an internal (e.g. DNA damage) or external signal (e.g. an extracellular death ligand), and proceeds through a series of biochemical events (signaling pathway phase) which trigger an execution phase. The execution phase is the last step of an apoptotic process, and is typically characterized by rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation, nuclear fragmentation (karyorrhexis), plasma membrane blebbing and fragmentation of the cell into apoptotic bodies. When the execution phase is completed, the cell has died.
Subterm of

Relationships

The relationship of GO:0006915 with other GO terms.

Relationship type GO terms
Is a
Regulates n.a.
Part of n.a.
Positively regulates n.a.
Negatively regulates n.a.

Ancestor tree

A force layout showing the ancestor tree for GO:0006915, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.

  • Drag and drop nodes to manually position (i.e. fix) them
  • Double click on a node to unfix the node
  • Press Alt and double click to visit the page containing further details of a GO term
  • Right clicking on a node will reveal a context menu

Controls

Force layout

Every force layout is different—we have picked a set of parameters which suits most GO ancestor tree chart well. If you mess something up—don't worry: hitting the "reset view" button above will reset the chart to its default layout.

Additional data

This table contains additional metadata associated with the GO entry's definition field.

Field Value
GOCtb
ISBN
Oxford Dictionary of Biochemistry and Molecular BiologyOxford Dictionary of Biochemistry and Molecular Biology

Anthony David Smith,Anthony Donald Smith · ISBN: 0198506732

Oxford University Press, USA, 2000 · 760 pages

This book provides a survey of current biochemistry and molecular biology in the form of a dictionary. It contains short but informative entries arranged under more than 17,000 headwords, providing fundamental but up-to-date information that is often difficult to locate in today'soverspecialized world. The book is intended as a handy reference of first resource for those seeking information outside their immediate knowledge area or for those who need to refresh their memory of fundamental knowledge. It gives the meanings of many terms used in molecular biology and describes the essential featuresof over approximately 2,000 enzymes and proteins, describing the reactions they catalyse or functions they perform, and includes filenames that facilitate the location of entires in databases of sequences. Many entries describe chemical compounds of relevance to biochemists, with approximately 950symbols and abbreviations. In addition, many physico-chemical laws, constants, and formulae are detailed. This revised edition has been fully up-dated in order to include the new information that has been discovered since the original edition was published in 1997.

PMID
Morphological classification of plant cell deaths.
Cell Death Differ. ; 18 (8): 1241–6.PMID: 21494263

Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

Associated Lotus transcripts

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

No transcripts are associated with this gene ontology identifier.