Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message
Field | Value |
---|---|
Namespace | Biological process |
Short description | Response to organonitrogen compound |
Full defintion | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an organonitrogen stimulus. An organonitrogen compound is formally a compound containing at least one carbon-nitrogen bond. |
Subterm of |
The relationship of GO:0010243 with other GO terms.
Relationship type | GO terms |
---|---|
Is a | |
Regulates | n.a. |
Part of | n.a. |
Positively regulates | n.a. |
Negatively regulates | n.a. |
A force layout showing the ancestor tree for GO:0010243, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.
This table contains additional metadata associated with the GO entry's definition field.
Field | Value |
---|---|
CHEBI | 35352 |
PMID | Characterization of tomato PHYB1 and identification of molecular defects in four mutant alleles. Plant Mol Biol. 1998 Dec; 38 (6): 1137–46.PMID: 9869419 The structure of the gene encoding the apoprotein of phytochrome B (PHYB1) in tomato has been determined from genomic and cDNA sequences. In contrast to PHYA, PHYB1 lacks an intron upstream of the first ATG. A single transcription start site was found by 5' RACE at -116. Tomato PHYB1 spans 7 kb starting from the first ATG. The coding region is organized into four exons as for other angiosperm PHY. The deduced apoprotein consists of 1131 amino acids, with a molecular mass of 125.4 kDa. Tomato phytochrome B1 shares 78% and 74% identity with Arabidopsis phytochromes B and D, respectively. Along with the normally spliced full-length transcripts, sequences of reverse transcriptase-PCR clones revealed five types of alternative transcripts. Each type of alternative transcript was missing a considerable part of the coding region, including the chromophore-binding site. The four putative PHYB1 mutants in tomato, which are temporarily red-light insensitive (tri), were each confirmed to have a mutation in PHYB1. Each mutation arose from a different, single-base substitution. Allele tri1 is presumably a null because the mutation introduces a stop at codon 92. In tri3, val-238 is replaced by Phe. The importance of this valine residue is evidenced by the fact that the tri3 phenotype is as strong as that of tri1. Alleles tri2 and tri4 encode proteins truncated at their C-termini. The former lacks either 170 or 438 amino acids, depending upon which of two types of splicing occurs during transcript maturation, while the latter lacks 225. |
GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .