Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

GO:0051304

Overview

Field Value
Namespace Biological process
Short description Chromosome separation
Full defintion The cell cycle process in which paired chromosomes are detached from each other. Chromosome separation begins with the release of cohesin complexes from chromosomes; in budding yeast, this includes the cleavage of cohesin complexes along the chromosome arms, followed by the separation of the centromeric regions. Chromosome separation also includes formation of chromatid axes mediated by condensins, and ends with the disentangling of inter-sister catenation catalyzed by topoisomerase II (topo II).
Subterm of

Relationships

The relationship of GO:0051304 with other GO terms.

Relationship type GO terms
Is a
Regulates n.a.
Part of
Positively regulates n.a.
Negatively regulates n.a.

Ancestor tree

A force layout showing the ancestor tree for GO:0051304, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.

  • Drag and drop nodes to manually position (i.e. fix) them
  • Double click on a node to unfix the node
  • Press Alt and double click to visit the page containing further details of a GO term
  • Right clicking on a node will reveal a context menu

Controls

Force layout

Every force layout is different—we have picked a set of parameters which suits most GO ancestor tree chart well. If you mess something up—don't worry: hitting the "reset view" button above will reset the chart to its default layout.

Additional data

This table contains additional metadata associated with the GO entry's definition field.

Field Value
GOCmtg_cell_cycle
PMID
Sister chromatid resolution: a cohesin releasing network and beyond.
Chromosoma. ; 119 (5): 459–67.PMID: 20352243

When chromosomes start to assemble in mitotic prophase, duplicated chromatids are not discernible within each chromosome. As condensation proceeds, they gradually show up, culminating in two rod-shaped structures apposed along their entire length within a metaphase chromosome. This process, known as sister chromatid resolution, is thought to be a prerequisite for rapid and synchronous separation of sister chromatids in anaphase. From a mechanistic point of view, the resolution process can be dissected into three distinct steps: (1) release of cohesin from chromosome arms; (2) formation of chromatid axes mediated by condensins; and (3) untanglement of inter-sister catenation catalyzed by topoisomerase II (topo II). In this review article, we summarize recent progress in our understanding the molecular mechanisms of sister chromatid resolution with a major focus on its first step, cohesin release. An emerging idea is that this seemingly simple step is regulated by an intricate network of positive and negative factors, including cohesin-binding proteins and mitotic kinases. Interestingly, some key factors responsible for cohesin release in early mitosis also play important roles in controlling cohesin functions during interphase. Finally, we discuss how the step of cohesin release might mechanistically be coordinated with the actions of condensins and topo II.

Associated Lotus transcripts 2

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

Transcript Name Description GO terms GO count
Serine/threonine protein kinase [Medicago truncatula] gi|357461629|ref|XP_003601096.1| 3
Serine/threonine protein kinase [Medicago truncatula] gi|357461629|ref|XP_003601096.1| 3

Co-occuring GO terms 1

A list of co-occurring GO terms within the L. japonicus gene space:

GO term Namespace Name Observations Saturation (%)
Biological process Chromosome separation 1 50.00