Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message
Field | Value |
---|---|
Namespace | Biological process |
Short description | Meiosis II cell cycle process |
Full defintion | A process that coontributes to the second meiotic division. The second meiotic division separates chromatids resulting in a haploid number of chromosomes. |
Subterm of |
The relationship of GO:0061983 with other GO terms.
Relationship type | GO terms |
---|---|
Is a | |
Regulates | n.a. |
Part of | n.a. |
Positively regulates | n.a. |
Negatively regulates | n.a. |
A force layout showing the ancestor tree for GO:0061983, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.
This table contains additional metadata associated with the GO entry's definition field.
Field | Value |
---|---|
PMID | Meiosis: the chromosomal foundation of reproduction. Biol Reprod. 2018 Jul 1; 99 (1): 112–126.PMID: 29385397 Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted. |
GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .