Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

GO:1903050

Overview

Field Value
Namespace Biological process
Short description Regulation of proteolysis involved in cellular protein catabolic process
Full defintion Any process that modulates the frequency, rate or extent of proteolysis involved in cellular protein catabolic process.
Subterm of

Relationships

The relationship of GO:1903050 with other GO terms.

Relationship type GO terms
Is a
Regulates
Part of n.a.
Positively regulates n.a.
Negatively regulates n.a.

Ancestor tree

A force layout showing the ancestor tree for GO:1903050, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.

  • Drag and drop nodes to manually position (i.e. fix) them
  • Double click on a node to unfix the node
  • Press Alt and double click to visit the page containing further details of a GO term
  • Right clicking on a node will reveal a context menu

Controls

Force layout

Every force layout is different—we have picked a set of parameters which suits most GO ancestor tree chart well. If you mess something up—don't worry: hitting the "reset view" button above will reset the chart to its default layout.

Additional data

This table contains additional metadata associated with the GO entry's definition field.

Field Value
GOCTermGenie
GO_REF0000058
PMID
Cathepsin C propeptide interacts with intestinal alkaline phosphatase and heat shock cognate protein 70 in human Caco-2 cells.
J Physiol Sci. ; 58 (2): 105–11.PMID: 18307834

The oligomeric structure and the residual propeptide are distinct characteristics of cathepsin C from other members in the papain superfamily. In this study, we examined the physiological role of the cathepsin C propeptide. The stable overexpression of cathepsin C propeptide significantly decreased the activities of intestinal alkaline phosphatase (IAP) and sucrase in human Caco-2 intestinal epithelial cells, whereas it did not change the proliferation and cathepsin C activity. The overexpression of cathepsin C propeptide significantly decreased the amounts of IAP protein in differentiated Caco-2 cells, compared with the transfection of mock vector, whereas the amounts of IAP transcripts were not changed. Pulse-chase analysis confirmed that the reduction in IAP activity was due to an increase in IAP degradation, but not a decrease in IAP expression. For the mechanism of the enhanced IAP degradation, we identified proteins interacting with cathepsin C propeptide in Caco-2 cells by immunoprecipitation and mass spectrometry. Cathepsin C propeptide interacted with proteins with a molecular mass of approximately 70 kDa, including IAP and heat shock cognate protein 70. Our present results suggest that the propeptide of cathepsin C may stimulate the sorting to the lysosome, at least in part, contributing to the degradation of IAP in Caco-2 cells.

Associated Lotus transcripts

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

No transcripts are associated with this gene ontology identifier.