Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

GO:1903504

Overview

Field Value
Namespace Biological process
Short description Regulation of mitotic spindle checkpoint
Full defintion Any process that modulates the frequency, rate or extent of mitotic spindle checkpoint.
Subterm of

Relationships

The relationship of GO:1903504 with other GO terms.

Relationship type GO terms
Is a
Regulates
Part of n.a.
Positively regulates n.a.
Negatively regulates n.a.

Ancestor tree

A force layout showing the ancestor tree for GO:1903504, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.

  • Drag and drop nodes to manually position (i.e. fix) them
  • Double click on a node to unfix the node
  • Press Alt and double click to visit the page containing further details of a GO term
  • Right clicking on a node will reveal a context menu

Controls

Force layout

Every force layout is different—we have picked a set of parameters which suits most GO ancestor tree chart well. If you mess something up—don't worry: hitting the "reset view" button above will reset the chart to its default layout.

Additional data

This table contains additional metadata associated with the GO entry's definition field.

Field Value
GOCTermGenie
GO_REF0000058
PMID
An E2 enzyme Ubc11 is required for ubiquitination of Slp1/Cdc20 and spindle checkpoint silencing in fission yeast.
Cell Cycle. ; 12 (6): 961–71.PMID: 23442800

For ordered mitotic progression, various proteins have to be regulated by an ubiquitin ligase, the anaphase-promoting complex or cyclosome (APC/C) with appropriate timing. Recent studies have implied that the activity of APC/C also contributes to release of mitotic checkpoint complexes (MCCs) from its target Cdc20 in the process of silencing the spindle assembly checkpoint (SAC). Here we describe a temperature-sensitive mutant (ubc11-P93L) in which cell cycle progression is arrested at mitosis. The mutant grows normally at the restrictive temperature when SAC is inactivated, suggesting that the arrest is not due to abnormal spindle assembly, but rather due to prolonged activation of SAC. Supporting this notion, MCCs remain bound to APC/C even when SAC is satisfied. The ubc11 (+) gene encodes one of the two E2 enzymes required for progression through mitosis in fission yeast. Remarkably, Slp1 (a fission yeast homolog of Cdc20), which is degraded in an APC/C-dependent manner, stays stable throughout the cell cycle in the ubc11-P93L mutant lacking the functional SAC. Other APC/C substrates, in contrast, were degraded on schedule. We have also found that a loss of Ubc4, the other E2 required for progression through mitosis, does not affect the stability of Slp1. We propose that each of the two E2 enzymes is responsible for collaborating with APC/C for a specific set of substrates, and that Ubc11 is responsible for regulating Slp1 with APC/C for silencing the SAC.

Associated Lotus transcripts

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

No transcripts are associated with this gene ontology identifier.