Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message
Field | Value |
---|---|
Namespace | Biological process |
Short description | Carboxylic acid transmembrane transport |
Full defintion | The process in which carboxylic acid is transported across a membrane. |
Subterm of |
The relationship of GO:1905039 with other GO terms.
Relationship type | GO terms |
---|---|
Is a | |
Regulates | n.a. |
Part of | n.a. |
Positively regulates | n.a. |
Negatively regulates | n.a. |
A force layout showing the ancestor tree for GO:1905039, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.
This table contains additional metadata associated with the GO entry's definition field.
Field | Value |
---|---|
GOC | TermGenie |
GO_REF | 0000069 |
PMID | Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett. 2000 Jun 23; 475 (3): 237–41.PMID: 10869563 We have studied the transcript levels of YGR260w and YLR004c, two genes encoding members of the yeast Dal5p subfamily of the major facilitator family, and we show that they increase when extracellular nicotinic acid and thiamine, respectively, are absent. The deletion of YGR260w in a bna1 auxotrophic mutant for nicotinic acid prevents growth at low nicotinic acid concentration. This suggests that YGR260w is necessary for nicotinic acid import into the cell. The direct measurement of nicotinic acid uptake on whole cells demonstrates that YGR260w encodes the yeast high affinity nicotinic acid permease. Its apparent K(m) of 1.7 microM is low enough to allow the uptake of the low concentrations of nicotinic acid normally secreted by wild type cells. |
GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .