Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message
Field | Value |
---|---|
Namespace | Cellular component |
Short description | GTPase complex |
Full defintion | A protein complex which is capable of GTPase activity. |
Subterm of |
The relationship of GO:1905360 with other GO terms.
Relationship type | GO terms |
---|---|
Is a | |
Regulates | n.a. |
Part of | n.a. |
Positively regulates | n.a. |
Negatively regulates | n.a. |
A force layout showing the ancestor tree for GO:1905360, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.
This table contains additional metadata associated with the GO entry's definition field.
Field | Value |
---|---|
GOC | TermGenie |
GO_REF | 0000088 |
PMID | Mechanism of activation of the Caenorhabditis elegans ras homologue let-60 by a novel, temperature-sensitive, gain-of-function mutation. Genetics. 1997 Jun; 146 (2): 553–65.PMID: 9178006 The Caenorhabditis elegans let-60 gene encodes a Ras protein that mediates induction of the hermaphrodite vulva. To better understand how mutations constitutively activate Ras and cause unregulated cell division, we have characterized ga89, a temperature-sensitive, gain-of-function mutation in let-60 ras. At 25 degrees, ga89 increases let-60 activity resulting in a multivulva phenotype. At 15 degrees, ga89 decreases let-60 activity resulting in a vulvaless phenotype in let-60(ga89)/Df animals. The ga89 mutation causes a leucine (L) to phenylalanine (F) substitution at amino acid 19, a residue conserved in all Ras proteins. We introduced the L19F change into human H-Ras protein and found that the in vitro GTPase activity of H-Ras became temperature-dependent. Genetic experiments suggest that LET-60 (L19F) interacts with GAP and GNEF, since mutations that decrease GAP and GNEF activity affect the multivulva phenotype of let-60(ga89) animals. These results suggest that the L19F mutation primarily affects the intrinsic rate of GTP hydrolysis by Ras, and that this effect may be sufficient to account for the activated-Ras phenotype caused by let-60(ga89). Our results suggest that a mutation in a human ras gene analogous to ga89 might contribute to oncogenic transformation. |
GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .