Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message
Field | Value |
---|---|
Namespace | Biological process |
Short description | Protein ufmylation |
Full defintion | Covalent attachment of the ubiquitin-like protein UFM1 to another protein. |
Subterm of |
The relationship of GO:0071569 with other GO terms.
Relationship type | GO terms |
---|---|
Is a | |
Regulates | n.a. |
Part of | n.a. |
Positively regulates | n.a. |
Negatively regulates | n.a. |
A force layout showing the ancestor tree for GO:0071569, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.
This table contains additional metadata associated with the GO entry's definition field.
Field | Value |
---|---|
GOC | vw |
PMID | A novel type of E3 ligase for the Ufm1 conjugation system. J Biol Chem. 2010 Feb 19; 285 (8): 5417–27.PMID: 20018847 The ubiquitin fold modifier 1 (Ufm1) is the most recently discovered ubiquitin-like modifier whose conjugation (ufmylation) system is conserved in multicellular organisms. Ufm1 is known to covalently attach with cellular protein(s) via a specific E1-activating enzyme (Uba5) and an E2-conjugating enzyme (Ufc1), but its E3-ligating enzyme(s) as well as the target protein(s) remain unknown. Herein, we report both a novel E3 ligase for Ufm1, designated Ufl1, and an Ufm1-specific substrate ligated by Ufl1, C20orf116. Ufm1 was covalently conjugated with C20orf116. Although Ufl1 has no obvious sequence homology to any other known E3s for ubiquitin and ubiquitin-like modifiers, the C20orf116 x Ufm1 formation was greatly accelerated by Ufl1. The C20orf116 x Ufm1 conjugate was cleaved by Ufm1-specific proteases, implying the reversibility of ufmylation. The conjugation was abundant in the liver and lungs of Ufm1-transgenic mice, fractionated into membrane fraction, and impaired in Uba5 knock-out cells. Intriguingly, immunological analysis revealed localizations of Ufl1 and C20orf116 mainly to the endoplasmic reticulum. Our results provide novel insights into the Ufm1 system involved in cellular regulation of multicellular organisms. |
GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .
Transcript | Name | Description | GO terms | GO count |
---|---|---|---|---|
– | PREDICTED: ubiquitin-fold modifier 1-like [Glycine max] gi|356552829|ref|XP_003544765.1| | 1 | ||
– | Ubiquitin-fold modifier 1; TAIR: AT1G77710.1 ubiquitin-fold modifier; Swiss-Prot: sp|Q9CA23|UFM1_ARATH Ubiquitin-fold modifier 1; TrEMBL-Plants: tr|I1MAL3|I1MAL3_SOYBN Ubiquitin-fold modifier 1; Found in the gene: LotjaGi1g1v0153500 | 1 |
A list of co-occurring GO terms within the L. japonicus gene space:
GO term | Namespace | Name | Observations | Saturation (%) |
---|---|---|---|---|
Biological process | Protein ufmylation | 1 | 50.00 |