Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

IPR015324

Description

IPR015324 is a Ribosomal protein Rsm22-like.

<p>Rsm22 has been identified as a mitochondrial small ribosomal subunit [[cite:PUB00035457]] and is a methyltransferase. In Schizosaccharomyces pombe (Fission yeast), Rsm22 is tandemly fused to Cox11 (a factor required for copper insertion into cytochrome oxidase) and the two proteins are proteolytically cleaved after import into the mitochondria [[cite:PUB00035457]]. This entry consists of mitochondrial Rsm22 and homologous sequences from bacteria.</p> <p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [[cite:PUB00007068], [cite:PUB00007069]]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits.</p> <p>Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [[cite:PUB00007069], [cite:PUB00007070]].</p>

This description is obtained from EB-eye REST.

Associated GO terms

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

GO term Namespace Name Definition Relationships
Biological process Translation The cellular metabolic process in which a protein is formed, using the sequence of a mature mRNA or circRNA molecule to specify the sequence of amino acids in a polypeptide chain. Translation is mediated by the ribosome, and begins with the formation of a ternary complex between aminoacylated initiator methionine tRNA, GTP, and initiation factor 2, which subsequently associates with the small subunit of the ribosome and an mRNA or circRNA. Translation ends with the release of a polypeptide chain from the ribosome.
Molecular function Methyltransferase activity Catalysis of the transfer of a methyl group to an acceptor molecule.

Associated Lotus transcripts 4

Transcript Name Description Predicted domains Domain count
PREDICTED: methyltransferase-like protein 17, mitochondrial-like [Glycine max] gi|356546324|ref|XP_003541577.1| 9
PREDICTED: methyltransferase-like protein 17, mitochondrial-like [Glycine max] gi|356546324|ref|XP_003541577.1| 9
Methyltransferase-like protein 17, mitochondrial; TAIR: AT1G64600.1 copper ion binding / methyltransferase; Swiss-Prot: sp|Q3U2U7|MET17_MOUSE Methyltransferase-like protein 17, mitochondrial; TrEMBL-Plants: tr|A0A151RGW1|A0A151RGW1_CAJCA Uncharacterized protein; Found in the gene: LotjaGi1g1v0425900 8
Methyltransferase-like protein 17, mitochondrial; TAIR: AT1G64600.1 copper ion binding / methyltransferase; Swiss-Prot: sp|Q3U2U7|MET17_MOUSE Methyltransferase-like protein 17, mitochondrial; TrEMBL-Plants: tr|A0A151RGW1|A0A151RGW1_CAJCA Uncharacterized protein; Found in the gene: LotjaGi1g1v0425900 7

Co-occuring domains 1

A list of co-occurring predicted domains within the L. japonicus gene space:

Predicted domain Source Observations Saturation (%)
SSF53335 SUPERFAMILY 1 25.00