Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

IPR020783

Description

IPR020783 is a Large ribosomal subunit protein uL11, C-terminal.

<p>This entry represents the C-terminal domain of uL11. The domain consists of a three-helical bundle and a short parallel two-stranded β-ribbon, with an overall α3-β4-α4-α5-β5 topology. All five secondary structure elements contribute to a conserved hydrophobic core. The domain is characterised by two extended loops that are disordered in the absence of the RNA but have defined structures in the complex [[cite:PUB00051026]].</p> <p>Ribosomal protein uL11 (also known as L12 in mammals and yeast) is one of the proteins from the large ribosomal subunit. In Escherichia coli, uL11 is known to bind directly to the 23S rRNA and plays a significant role during initiation, elongation, and termination of protein synthesis. It belongs to a family of ribosomal proteins which, on the basis of sequence similarities [[cite:PUB00004378]], groups bacteria, plant chloroplast, red algal chloroplast, cyanelle and archaeabacterial uL11; and mammalian, plant and yeast L12 (YL15). uL11 is a protein of 140 to 165 amino-acid residues and consists of a 23S rRNA binding C-terminal domain and an N-terminal domain that directly contacts protein synthesis factors. These two domains are joined by a flexible linker that allows inter-domain movement during protein synthesis. While the C-terminal domain of uL11 binds RNA tightly, the N-terminal domain makes only limited contacts with RNA and is proposed to function as a switch that reversibly associates with an adjacent region of RNA [[cite:PUB00050356], [cite:PUB00022183], [cite:PUB00042066], [cite:PUB00051026]]. In E. coli, the C-terminal half of uL11 has been shown [[cite:PUB00000269]] to be in an extended and loosely folded conformation and is likely to be buried within the ribosomal structure.</p> <p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [[cite:PUB00007068], [cite:PUB00007069]]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits.</p> <p>Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [[cite:PUB00007069], [cite:PUB00007070]].</p>

This description is obtained from EB-eye REST.

Associated GO terms

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

GO term Namespace Name Definition Relationships
Molecular function Structural constituent of ribosome The action of a molecule that contributes to the structural integrity of the ribosome.
Cellular component Ribosome An intracellular organelle, about 200 A in diameter, consisting of RNA and protein. It is the site of protein biosynthesis resulting from translation of messenger RNA (mRNA). It consists of two subunits, one large and one small, each containing only protein and RNA. Both the ribosome and its subunits are characterized by their sedimentation coefficients, expressed in Svedberg units (symbol: S). Hence, the prokaryotic ribosome (70S) comprises a large (50S) subunit and a small (30S) subunit, while the eukaryotic ribosome (80S) comprises a large (60S) subunit and a small (40S) subunit. Two sites on the ribosomal large subunit are involved in translation, namely the aminoacyl site (A site) and peptidyl site (P site). Ribosomes from prokaryotes, eukaryotes, mitochondria, and chloroplasts have characteristically distinct ribosomal proteins.
Biological process Translation The cellular metabolic process in which a protein is formed, using the sequence of a mature mRNA or circRNA molecule to specify the sequence of amino acids in a polypeptide chain. Translation is mediated by the ribosome, and begins with the formation of a ternary complex between aminoacylated initiator methionine tRNA, GTP, and initiation factor 2, which subsequently associates with the small subunit of the ribosome and an mRNA or circRNA. Translation ends with the release of a polypeptide chain from the ribosome.

Associated Lotus transcripts 14

Transcript Name Description Predicted domains Domain count
PREDICTED: 60S ribosomal protein L12-like [Cicer arietinum] gi|502121944|ref|XP_004497502.1| 17
PREDICTED: 60S ribosomal protein L12-like [Glycine max] gi|356548248|ref|XP_003542515.1| 17
Plastid ribosomal protein l11 [Theobroma cacao] gi|508776569|gb|EOY23825.1| 25
PREDICTED: 54S ribosomal protein L19, mitochondrial-like [Cicer arietinum] gi|502149042|ref|XP_004507370.1| 14
50S ribosomal protein L11; TAIR: AT2G37190.1 Ribosomal protein L11 family protein; Swiss-Prot: sp|O50003|RL12_PRUAR 60S ribosomal protein L12; TrEMBL-Plants: tr|V4UR62|V4UR62_9ROSI Uncharacterized protein; Found in the gene: LotjaGi2g1v0359600 19
50S ribosomal protein L11; TAIR: AT2G37190.1 Ribosomal protein L11 family protein; Swiss-Prot: sp|O50003|RL12_PRUAR 60S ribosomal protein L12; TrEMBL-Plants: tr|M0REW8|M0REW8_MUSAM Uncharacterized protein; Found in the gene: LotjaGi2g1v0359600 13
50S ribosomal protein L11; TAIR: AT2G37190.1 Ribosomal protein L11 family protein; Swiss-Prot: sp|O50003|RL12_PRUAR 60S ribosomal protein L12; TrEMBL-Plants: tr|V4UR62|V4UR62_9ROSI Uncharacterized protein; Found in the gene: LotjaGi2g1v0359600 19
50S ribosomal protein L11; TAIR: AT2G37190.1 Ribosomal protein L11 family protein; Swiss-Prot: sp|O50003|RL12_PRUAR 60S ribosomal protein L12; TrEMBL-Plants: tr|V4UR62|V4UR62_9ROSI Uncharacterized protein; Found in the gene: LotjaGi2g1v0359600 19
50S ribosomal protein L11; TAIR: AT2G37190.1 Ribosomal protein L11 family protein; Swiss-Prot: sp|O50003|RL12_PRUAR 60S ribosomal protein L12; TrEMBL-Plants: tr|A5C9G0|A5C9G0_VITVI Putative uncharacterized protein; Found in the gene: LotjaGi5g1v0078100 18
50S ribosomal protein L11; TAIR: AT2G37190.1 Ribosomal protein L11 family protein; Swiss-Prot: sp|O50003|RL12_PRUAR 60S ribosomal protein L12; TrEMBL-Plants: tr|K7LQG0|K7LQG0_SOYBN Uncharacterized protein; Found in the gene: LotjaGi5g1v0078100 19
50S ribosomal protein L11; TAIR: AT2G37190.1 Ribosomal protein L11 family protein; Swiss-Prot: sp|O50003|RL12_PRUAR 60S ribosomal protein L12; TrEMBL-Plants: tr|M0REW8|M0REW8_MUSAM Uncharacterized protein; Found in the gene: LotjaGi5g1v0078100 13
50S ribosomal protein L11; TAIR: AT2G37190.1 Ribosomal protein L11 family protein; Swiss-Prot: sp|O50003|RL12_PRUAR 60S ribosomal protein L12; TrEMBL-Plants: tr|K7LQG0|K7LQG0_SOYBN Uncharacterized protein; Found in the gene: LotjaGi5g1v0078100 19
50S ribosomal protein L11; TAIR: AT1G32990.1 plastid ribosomal protein l11; Swiss-Prot: sp|Q9MAP3|RK11_ARATH 50S ribosomal protein L11, chloroplastic; TrEMBL-Plants: tr|I3S932|I3S932_LOTJA Uncharacterized protein; Found in the gene: LotjaGi6g1v0032300 26
50S ribosomal protein L11; TAIR: AT4G35490.1 mitochondrial ribosomal protein L11; Swiss-Prot: sp|Q9Y3B7|RM11_HUMAN 39S ribosomal protein L11, mitochondrial; TrEMBL-Plants: tr|T2DNZ2|T2DNZ2_PHAVU 60S ribosomal protein L19; Found in the gene: LotjaGi6g1v0195600 23

Co-occuring domains 1

A list of co-occurring predicted domains within the L. japonicus gene space:

Predicted domain Source Observations Saturation (%)
cd00349 CDD 1 7.14