Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

IPR023575

Description

IPR023575 is a Small ribosomal subunit protein uS19, superfamily.

<p>The signatures in this entry match the structural unit of the ribosomal S19 family.</p> <p>The small subunit ribosomal proteins can be categorised as: primary binding proteins, which bind directly and independently to 16S rRNA; secondary binding proteins, which display no specific affinity for 16S rRNA, but its assembly is contingent upon the presence of one or more primary binding proteins; and tertiary binding proteins, which require the presence of one or more secondary binding proteins and sometimes other tertiary binding proteins. The small ribosomal subunit protein S19 contains 88-144 amino acid residues. In Escherichia coli, S19 is known to form a complex with S13 that binds strongly to 16S ribosomal RNA. Experimental evidence [[cite:PUB00004907]] has revealed that S19 is moderately exposed on the ribosomal surface, and is designated a secondary rRNA binding protein. S19 belongs to a family of ribosomal proteins [[cite:PUB00004907], [cite:PUB00001612]] that includes: eubacterial S19; algal and plant chloroplast S19; cyanelle S19; archaebacterial S19; plant mitochondrial S19; and eukaryotic S15 ('rig' protein).</p> <p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [[cite:PUB00007068], [cite:PUB00007069]]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits.</p> <p>Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [[cite:PUB00007069], [cite:PUB00007070]].</p>

This description is obtained from EB-eye REST.

Associated GO terms

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

GO term Namespace Name Definition Relationships
Molecular function Structural constituent of ribosome The action of a molecule that contributes to the structural integrity of the ribosome.
Cellular component Ribosome An intracellular organelle, about 200 A in diameter, consisting of RNA and protein. It is the site of protein biosynthesis resulting from translation of messenger RNA (mRNA). It consists of two subunits, one large and one small, each containing only protein and RNA. Both the ribosome and its subunits are characterized by their sedimentation coefficients, expressed in Svedberg units (symbol: S). Hence, the prokaryotic ribosome (70S) comprises a large (50S) subunit and a small (30S) subunit, while the eukaryotic ribosome (80S) comprises a large (60S) subunit and a small (40S) subunit. Two sites on the ribosomal large subunit are involved in translation, namely the aminoacyl site (A site) and peptidyl site (P site). Ribosomes from prokaryotes, eukaryotes, mitochondria, and chloroplasts have characteristically distinct ribosomal proteins.
Biological process Translation The cellular metabolic process in which a protein is formed, using the sequence of a mature mRNA or circRNA molecule to specify the sequence of amino acids in a polypeptide chain. Translation is mediated by the ribosome, and begins with the formation of a ternary complex between aminoacylated initiator methionine tRNA, GTP, and initiation factor 2, which subsequently associates with the small subunit of the ribosome and an mRNA or circRNA. Translation ends with the release of a polypeptide chain from the ribosome.

Associated Lotus transcripts 9

Transcript Name Description Predicted domains Domain count
PREDICTED: ribosomal protein S19, mitochondrial-like [Glycine max] gi|356525190|ref|XP_003531210.1| 16
PREDICTED: 40S ribosomal protein S15-4-like [Cicer arietinum] gi|502112438|ref|XP_004494331.1| 14
PREDICTED: 40S ribosomal protein S15-4-like [Cicer arietinum] gi|502115131|ref|XP_004495132.1| 14
30S ribosomal protein S19; TAIR: AT5G47320.1 ribosomal protein S19; Swiss-Prot: sp|P27527|RT19_PETHY Ribosomal protein S19, mitochondrial; TrEMBL-Plants: tr|V7D0E8|V7D0E8_PHAVU Uncharacterized protein; Found in the gene: LotjaGi3g1v0380200 16
30S ribosomal protein S19; TAIR: AT5G47320.1 ribosomal protein S19; Swiss-Prot: sp|P27527|RT19_PETHY Ribosomal protein S19, mitochondrial; TrEMBL-Plants: tr|V7D0E8|V7D0E8_PHAVU Uncharacterized protein; Found in the gene: LotjaGi3g1v0380200 16
30S ribosomal protein S19; TAIR: AT5G09500.1 Ribosomal protein S19 family protein; Swiss-Prot: sp|P31674|RS15_ORYSJ 40S ribosomal protein S15; TrEMBL-Plants: tr|I3SMI9|I3SMI9_LOTJA Uncharacterized protein; Found in the gene: LotjaGi4g1v0456200 14
30S ribosomal protein S19; TAIR: AT5G09500.1 Ribosomal protein S19 family protein; Swiss-Prot: sp|P31674|RS15_ORYSJ 40S ribosomal protein S15; TrEMBL-Plants: tr|I1KNN1|I1KNN1_SOYBN Uncharacterized protein; Found in the gene: LotjaGi4g1v0456200 14
30S ribosomal protein S19; TAIR: AT1G04270.1 cytosolic ribosomal protein S15; Swiss-Prot: sp|O65059|RS15_PICMA 40S ribosomal protein S15; TrEMBL-Plants: tr|I3SNQ1|I3SNQ1_LOTJA Uncharacterized protein; Found in the gene: LotjaGi5g1v0176100 14
30S ribosomal protein S19; TAIR: AT5G09500.1 Ribosomal protein S19 family protein; Swiss-Prot: sp|Q945U1|RS15_ELAOL 40S ribosomal protein S15; TrEMBL-Plants: tr|I3SNQ1|I3SNQ1_LOTJA Uncharacterized protein; Found in the gene: LotjaGi5g1v0176100 14

Co-occuring domains 1

A list of co-occurring predicted domains within the L. japonicus gene space:

Predicted domain Source Observations Saturation (%)
TIGR01025 TIGRFAM 1 11.11