Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message
IPR034082 is a Protein SQS1, R3H domain.
<p>This R3H domain is found in the Saccharomyces cerevisiae protein SQS1 and in fungal and plant proteins with unknown functions, all of which also contain a G-patch domain. SQS1 may be involved in splicing, since overexpression antagonizes the suppression of splicing defects by spp382 mutants [[cite:PUB00082550]].</p> <p>The R3H domain is a conserved sequence motif found in proteins from a diverse range of organisms including eubacteria, green plants, fungi and various groups of metazoans, but not in archaea and Escherichia coli. The domain is named R3H because it contains an invariant arginine and a highly conserved histidine, that are separated by three residues. It also displays a conserved pattern of hydrophobic residues, prolines and glycines. It can be found alone, in association with AAA domain or with various DNA/RNA binding domains like DSRM, KH, G-patch, PHD, DEAD box, or RRM. The functions of these domains indicate that the R3H domain might be involved in polynucleotide-binding, including DNA, RNA and single-stranded DNA [[cite:PUB00005485]].</p> <p>The 3D structure of the R3H domain has been solved. The fold presents a small motif, consisting of a three-stranded antiparallel β-sheet, against which two α-helices pack from one side. This fold is related to the structures of the YhhP protein and the C-terminal domain of the translational initiation factor IF3. Three conserved basic residues cluster on the same face of the R3H domain and could play a role in nucleic acid recognition. An extended hydrophobic area at a different site of the molecular surface could act as a protein-binding site [[cite:PUB00018517]].</p>
This description is obtained from EB-eye REST.
GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .
GO term | Namespace | Name | Definition | Relationships |
---|---|---|---|---|
Molecular function | Nucleic acid binding | Interacting selectively and non-covalently with any nucleic acid. |
Transcript | Name | Description | Predicted domains | Domain count |
---|---|---|---|---|
– | Zinc finger CCCH-type with G patch domain-containing protein [Medicago truncatula] gi|357478467|ref|XP_003609519.1| | 13 |
A list of co-occurring predicted domains within the L. japonicus gene space:
Predicted domain | Source | Observations | Saturation (%) |
---|---|---|---|
mobidb-lite | MobiDBLite | 1 | 100.00 |