Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message
Field | Value |
---|---|
Namespace | Biological process |
Short description | Transcription-coupled nucleotide-excision repair |
Full defintion | The nucleotide-excision repair process that carries out preferential repair of DNA lesions on the actively transcribed strand of the DNA duplex. In addition, the transcription-coupled nucleotide-excision repair pathway is required for the recognition and repair of a small subset of lesions that are not recognized by the global genome nucleotide excision repair pathway. |
Subterm of |
The relationship of GO:0006283 with other GO terms.
Relationship type | GO terms |
---|---|
Is a | |
Regulates | n.a. |
Part of | n.a. |
Positively regulates | n.a. |
Negatively regulates | n.a. |
A force layout showing the ancestor tree for GO:0006283, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.
This table contains additional metadata associated with the GO entry's definition field.
Field | Value |
---|---|
PMID | How nucleotide excision repair protects against cancer. Nat Rev Cancer. 2001 Oct; 1 (1): 22–33.PMID: 11900249 Eukaryotic cells can repair many types of DNA damage. Among the known DNA repair processes in humans, one type--nucleotide excision repair (NER)--specifically protects against mutations caused indirectly by environmental carcinogens. Humans with a hereditary defect in NER suffer from xeroderma pigmentosum and have a marked predisposition to skin cancer caused by sunlight exposure. How does NER protect against skin cancer and possibly other types of environmentally induced cancer in humans? |
GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .
Transcript | Name | Description | GO terms | GO count |
---|---|---|---|---|
– | WD40 repeat-like protein; TAIR: AT1G27840.1 Transducin/WD40 repeat-like superfamily protein; Swiss-Prot: sp|Q13216|ERCC8_HUMAN DNA excision repair protein ERCC-8; TrEMBL-Plants: tr|I1K866|I1K866_SOYBN Uncharacterized protein; Found in the gene: LotjaGi1g1v0360500 | 1 |
A list of co-occurring GO terms within the L. japonicus gene space:
GO term | Namespace | Name | Observations | Saturation (%) |
---|---|---|---|---|
Biological process | Transcription-coupled nucleotide-excision repair | 1 | 100.00 |