Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message
Field | Value |
---|---|
Namespace | Biological process |
Short description | Regulation of phosphatidate phosphatase activity |
Full defintion | Any process that modulates the frequency, rate or extent of phosphatidate phosphatase activity. |
Subterm of |
The relationship of GO:1903730 with other GO terms.
Relationship type | GO terms |
---|---|
Is a | |
Regulates | n.a. |
Part of | |
Positively regulates | n.a. |
Negatively regulates | n.a. |
A force layout showing the ancestor tree for GO:1903730, and its immediate children. If you wish to explore the tree dynamically, please use the GO Explorer.
This table contains additional metadata associated with the GO entry's definition field.
Field | Value |
---|---|
GOC | TermGenie |
GO_REF | 0000059 |
PMID | Yeast Nem1-Spo7 protein phosphatase activity on Pah1 phosphatidate phosphatase is specific for the Pho85-Pho80 protein kinase phosphorylation sites. J Biol Chem. 2014 Dec 12; 289 (50): 34699–708.PMID: 25359770 Pah1 is the phosphatidate phosphatase in the yeast Saccharomyces cerevisiae that produces diacylglycerol for triacylglycerol synthesis and concurrently controls the levels of phosphatidate used for phospholipid synthesis. Phosphorylation and dephosphorylation of Pah1 regulate its subcellular location and phosphatidate phosphatase activity. Compared with its phosphorylation by multiple protein kinases, Pah1 is dephosphorylated by a protein phosphatase complex consisting of Nem1 (catalytic subunit) and Spo7 (regulatory subunit). In this work, we characterized the Nem1-Spo7 phosphatase complex for its enzymological, kinetic, and regulatory properties with phosphorylated Pah1. The dephosphorylation of Pah1 by Nem1-Spo7 phosphatase resulted in the stimulation (6-fold) of phosphatidate phosphatase activity. For Pah1 phosphorylated by the Pho85-Pho80 kinase complex, maximum Nem1-Spo7 phosphatase activity required Mg(2+) ions (8 mm) and Triton X-100 (0.25 mm) at pH 5.0. The energy of activation for the reaction was 8.4 kcal/mol, and the enzyme was thermally labile at temperatures above 40 °C. The enzyme activity was inhibited by sodium vanadate, sodium fluoride, N-ethylmaleimide, and phenylglyoxal but was not significantly affected by lipids or nucleotides. Nem1-Spo7 phosphatase activity was dependent on the concentrations of Pah1 phosphorylated by Pho85-Pho80, Cdc28-cyclin B, PKA, and PKC with kcat and Km values of 0.29 s(-1) and 81 nm, 0.11 s(-1) and 127 nm, 0.10 s(-1) and 46 nm, and 0.02 s(-1) and 38 nm, respectively. Its specificity constant (kcat/Km) for Pah1 phosphorylated by Pho85-Pho80 was 1.6-, 4-, and 6-fold higher, respectively, than that phosphorylated by PKA, Cdc28-cyclin B, and PKC. |
GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .
Transcript | Name | Description | GO terms | GO count |
---|---|---|---|---|
– | Hydroxyproline-rich glycoprotein family protein, putative; TAIR: AT4G24500.1 hydroxyproline-rich glycoprotein family protein; Swiss-Prot: sp|Q9JKS4|LDB3_MOUSE LIM domain-binding protein 3; TrEMBL-Plants: tr|I1MB09|I1MB09_SOYBN Uncharacterized protein; Found in the gene: LotjaGi1g1v0136600 | 3 |
A list of co-occurring GO terms within the L. japonicus gene space:
GO term | Namespace | Name | Observations | Saturation (%) |
---|---|---|---|---|
Biological process | Regulation of phosphatidate phosphatase activity | 1 | 100.00 |