Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

IPR000231

Description

IPR000231 is a Large ribosomal subunit protein eL30.

<p>This family represents the large ribosomal subunit protein eL30 family of proteins, which includes:</p> <ul> <li>Mammalian eL30 [[cite:PUB00001749], [cite:PUB00101554]].</li> <li>Thermococcus celer eL30 [[cite:PUB00004394]].</li> <li>Methanococcus vannielii eL30 [[cite:PUB00003405]].</li> <li>Sulfolobus acidocaldarius eL30 [[cite:PUB00004357]].</li> </ul> <p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [[cite:PUB00007068], [cite:PUB00007069]]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits.</p> <p>Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [[cite:PUB00007069], [cite:PUB00007070]].</p>

This description is obtained from EB-eye REST.

Associated GO terms

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

GO term Namespace Name Definition Relationships
Molecular function RNA binding Interacting selectively and non-covalently with an RNA molecule or a portion thereof.
Molecular function Structural constituent of ribosome The action of a molecule that contributes to the structural integrity of the ribosome.
Cellular component Cytosolic large ribosomal subunit The large subunit of a ribosome located in the cytosol.

Associated Lotus transcripts 7

Transcript Name Description Predicted domains Domain count
RecName: Full=60S ribosomal protein L30gi|2879811|emb|CAA11256.1| ribosomal protein L30 [Lupinus luteus] gi|6094048|sp|O49884.1|RL30_LUPLU 12
PREDICTED: 60S ribosomal protein L30-like [Glycine max] gi|356536572|ref|XP_003536811.1| 12
PREDICTED: 60S ribosomal protein L30-like [Cicer arietinum] gi|502180636|ref|XP_004516683.1| 12
PREDICTED: 60S ribosomal protein L30-like [Glycine max] gi|356536572|ref|XP_003536811.1| 11
60S ribosomal protein L30; TAIR: AT1G36240.1 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein; Swiss-Prot: sp|O49884|RL30_LUPLU 60S ribosomal protein L30; TrEMBL-Plants: tr|I3S9Q1|I3S9Q1_LOTJA Uncharacterized protein; Found in the gene: LotjaGi1g1v0525700 13
60S ribosomal protein L30; TAIR: AT1G36240.1 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein; Swiss-Prot: sp|O49884|RL30_LUPLU 60S ribosomal protein L30; TrEMBL-Plants: tr|A0A0B2PLT2|A0A0B2PLT2_GLYSO 60S ribosomal protein L30; Found in the gene: LotjaGi2g1v0053800 13
60S ribosomal protein L30; TAIR: AT1G36240.1 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein; Swiss-Prot: sp|O49884|RL30_LUPLU 60S ribosomal protein L30; TrEMBL-Plants: tr|A0A0B2PLT2|A0A0B2PLT2_GLYSO 60S ribosomal protein L30; Found in the gene: LotjaGi4g1v0389100 13

Co-occuring domains 1

A list of co-occurring predicted domains within the L. japonicus gene space:

Predicted domain Source Observations Saturation (%)
SSF55315 SUPERFAMILY 1 14.29