Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

IPR012089

Description

IPR012089 is a tRNA-cytidine(32) 2-sulfurtransferase.

<p>This entry represents tRNA-cytidine(32) 2-sulfurtransferase (also known as 2-thiocytidine tRNA biosynthesis protein, TtcA) and its homologues.</p> <p>The aminoacyl-tRNA synthetases (also known as aminoacyl-tRNA ligases) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction [[cite:PUB00079872], [cite:PUB00079873]]. These proteins differ widely in size and oligomeric state, and have limited sequence homology [[cite:PUB00007191]]. The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossman fold catalytic domain and are mostly monomeric [[cite:PUB00006477]]. Class II aminoacyl-tRNA synthetases share an anti-parallel β-sheet fold flanked by α-helices [[cite:PUB00000386]], and are mostly dimeric or multimeric, containing at least three conserved regions [[cite:PUB00000723], [cite:PUB00005365], [cite:PUB00004391]]. However, tRNA binding involves an α-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan, valine, and some lysine synthetases (non-eukaryotic group) belong to class I synthetases. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, phenylalanine, proline, serine, threonine, and some lysine synthetases (non-archaeal group), belong to class-II synthetases. Based on their mode of binding to the tRNA acceptor stem, both classes of tRNA synthetases have been subdivided into three subclasses, designated 1a, 1b, 1c and 2a, 2b, 2c [[cite:PUB00007363]].</p> <p>tRNA-cytidine(32) 2-sulfurtransferase (also known as 2-thiocytidine tRNA biosynthesis protein TtcA) is required for the thiolation of cytidine in position 32 of tRNA, to form 2-thiocytidine (s(2)C32). The modified nucleoside 2-thiocytidine (s(2)C) has so far been found in tRNA from archaea and bacteria. The TtcA protein family is characterised by the existence of both a PP-loop and a Cys-X(1)-X(2)-Cys motif in the central region of the protein but can be divided into two distinct groups based on the presence and location of additional Cys-X(1)-X(2)-Cys motifs in terminal regions of the sequence. Mutant analysis showed that both cysteines in this central conserved Cys-X(1)-X(2)-Cys motif are required for the formation of s(2)C [[cite:PUB00044701]].</p>

This description is obtained from EB-eye REST.

Associated GO terms

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

GO term Namespace Name Definition Relationships
Biological process TRNA processing The process in which a pre-tRNA molecule is converted to a mature tRNA, ready for addition of an aminoacyl group.

Associated Lotus transcripts 1

Transcript Name Description Predicted domains Domain count
Cytoplasmic tRNA 2-thiolation protein [Medicago truncatula] gi|357467587|ref|XP_003604078.1| 15

Co-occuring domains 1

A list of co-occurring predicted domains within the L. japonicus gene space:

Predicted domain Source Observations Saturation (%)
mobidb-lite MobiDBLite 1 100.00