Your browser is unable to support new features implemented in HTML5 and CSS3 to render this site as intended. Your experience may suffer from functionality degradation but the site should remain usable. We strongly recommend the latest version of Google Chrome, OS X Safari or Mozilla Firefox. As Safari is bundled with OS X, if you are unable to upgrade to a newer version of OS X, we recommend using an open source browser. Dismiss message

IPR013725

Description

IPR013725 is a DNA replication factor RFC1, C-terminal.

<p>This is the C-terminal domain of replication factor C, RFC1. RFC complexes hydrolyse ATP and load sliding clamps such as PCNA (proliferating cell nuclear antigen) onto double-stranded DNA. RFC1 is essential for RFC function in vivo [[cite:PUB00020937], [cite:PUB00020875]].</p>

This description is obtained from EB-eye REST.

Associated GO terms

GO predictions are based solely on the InterPro-to-GO mappings published by EMBL-EBI, which are in turn based on the mapping of predicted domains to the InterPro dataset. The InterPro-to-GO mapping was last updated on , while the GO metadata was last updated on .

GO term Namespace Name Definition Relationships
Molecular function DNA clamp loader activity Catalysis of the reaction: ATP + H2O = ADP + phosphate, to drive the opening of the ring structure of the PCNA complex, or any of the related sliding clamp complexes, and their closing around the DNA duplex.
Molecular function ATP binding Interacting selectively and non-covalently with ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator.
Cellular component DNA replication factor C complex A complex that loads the DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA) onto DNA, thereby permitting processive DNA synthesis catalyzed by DNA polymerase. In eukaryotes the complex consists of five polypeptides.
Biological process DNA replication The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.

Associated Lotus transcripts 2

Transcript Name Description Predicted domains Domain count
PREDICTED: replication factor C subunit 1-like [Cicer arietinum] gi|502145937|ref|XP_004506246.1| 10
PREDICTED: replication factor C subunit 1-like [Glycine max] gi|356544778|ref|XP_003540824.1| 8

Co-occuring domains 1

A list of co-occurring predicted domains within the L. japonicus gene space:

Predicted domain Source Observations Saturation (%)
mobidb-lite MobiDBLite 1 50.00